Fault Detection and Diagnosis in Induction Machines: A Case Study
نویسندگان
چکیده
Nowadays in industry there many processes where human intervention is replaced by electrical machines, especially induction machines due to his robustness and performance. Although, induction machines are a high reliable device, they are also susceptible to faults. Therefore, the study of induction machine state is essential to reduce human and financial costs. It is presented in this paper an on-line system for detection and diagnosis of electrical faults in induction machines based on computer-aided monitoring of the supply currents. The main objective is to detect and identify the presence of broken rotor bars and stator short-circuits in the induction motor. The presence of faults in the machine causes different disturbances in the supply currents. Through a stationary reference frame, such as αβ-vector transform it is possible to extract and manipulate the results obtained from the supply currents using Principal Component Analysis (PCA).
منابع مشابه
Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملStator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
متن کاملA Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I
Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...
متن کاملApplication of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II
The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...
متن کاملFault Diagnosis in a Yeast Fermentation Bioreactor by Genetic Fuzzy System
In this paper, the fuzzy system has been used for fault detection and diagnosis of a yeast fermentation bioreactor based on measurements corrupted by noise. In one case, parameters of membership functions are selected in a conventional manner. In another case, using certainty factors between normal and faulty conditions the optimal values of these parameters have been obtained through the g...
متن کامل